Browsing by Author "Invernizzi, Marco"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Multiobjective optimization for pricing system security in electricity markets(Institute of Electrical and Electronics Engineers (IEEE), 2003-05-13) Milano, Federico; Canizares, Claudio A.; Invernizzi, MarcoThis paper proposes a novel technique for representing system security in the operations of decentralized electricity markets, with special emphasis on voltage stability. An interior point method is used to solve the optimal power flow problem with a multiobjective function for maximizing both social benefit and the distance to maximum loading conditions. A six-bus system with both supply and demand-side bidding is used to illustrate the proposed technique for both elastic and inelastic demand, and a 129-bus test system that models the Italian HV transmission network is used for testing the practical applicability of the proposed method. The results obtained show that the proposed technique is able to improve system security while yielding better market conditions through increased transaction levels and improved locational marginal prices throughout the system.Item Voltage stability constrained OPF market models considering contingency criteria(Elsevier, 2004-12-22) Milano, Federico; Cañizares, Claudio A.; Invernizzi, MarcoThis paper proposes two novel techniques for including contingencies in OPF-based electricity market computations and for the estimation of a “system-wide” available transfer capability (SATC). The OPF problem formulation includes voltage stability constraints and a loading parameter in order to ensure a proper stability margin for the market solution. Two methods are proposed. The first technique is an iterative approach and computes an SATC value based on an contingency criterion for an initial optimal operating condition, to then solve an OPF problem for the worst contingency case; this process is repeated until the changes in the SATC values are below a minimum threshold. The second approach solves a reduced number of OPF problems associated with contingency cases according to a ranking based on a power transfer sensitivity analysis of the transmission lines. Both methods are tested on a 6-bus system and on a realistic 129-bus Italian network model considering supply and demand side bidding. Local marginal prices and nodal congestion prices resulting from the proposed solutions as well as comparisons with results obtained by means of a standard OPF technique are also presented and discussed.