Browsing by Author "Violante, Walter"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item A Review of Modeling and Applications of Energy Storage Systems in Power Grids(Institute of Electrical and Electronics Engineers (IEEE), 2022-03-25) Calero, Fabian; Cañizares, Claudio A.; Bhattacharya, Kankar; Anierobi, Chioma; Calero, Ivan; Zambroni de Souza, Matheus F.; Farrokhabadi, Mostafa; Guzman, Noela Sofia; Mendieta, William; Peralta, Dario; Solanki, Bharatkumar V.; Padmanabhan, Nitin; Violante, WalterAs the penetration of variable renewable generation increases in power systems, issues, such as grid stiffness, larger frequency deviations, and grid stability, are becoming more relevant, particularly in view of 100% renewable energy networks, which is the future of smart grids. In this context, energy storage systems (ESSs) are proving to be indispensable for facilitating the integration of renewable energy sources (RESs), are being widely deployed in both microgrids and bulk power systems, and thus will be the hallmark of the clean electrical grids of the future. Hence, this article reviews several energy storage technologies that are rapidly evolving to address the RES integration challenge, particularly compressed air energy storage (CAES), flywheels, batteries, and thermal ESSs, and their modeling and applications in power grids. An overview of these ESSs is provided, focusing on new models and applications in microgrids and distribution and transmission grids for grid operation, markets, stability, and control.Item An Energy Management System for Isolated Microgrids With Thermal Energy Resources(Institute of Electrical and Electronics Engineers (IEEE), 2020-02-11) Violante, Walter; Canizares, Claudio A.; Trovato, Michele A.; Forte, GiuseppeA novel Energy Management System (EMS) model for an isolated microgrid, integrating thermal energy resources, such as Combined Heat and Power (CHP) units, boilers, Heat Pumps (HPs), and Thermal Storage System (TSS), while considering thermal load models, is proposed in this paper. The developed EMS is tested and validated with a real testbed microgrid located in Bari, Italy, which supplies both electricity and heat to a building at the Politecnico di Bari. The proposed EMS aims to minimize the fuel cost and includes thermal comfort requirements and building models, along with suitable models for CHP units and hot water-based TSS, based on an optimization problem formulated as a Mixed Integer Linear Programming (MILP) problem, which is readily handled with commercial solvers, making the EMS fit for online applications. The proposed EMS is compared with an electrical-only EMS, i.e., a practical EMS that does not include thermal systems, with the simulations carried out for different winter days demonstrating the economic benefits of accounting for thermal system models in a microgrid EMS, resulting in significant savings in the daily fuel cost.