Repository logo
About
Deposit
Communities & Collections
All of UWSpace
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
Log In
Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Wang, Yingke"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    A Survival-Driven Machine Learning Framework for Donor-Recipient Matching in Liver Transplantation: Predictive Ranking and Optimal Donor Profiling
    (University of Waterloo, 2025-01-27) Wang, Yingke; He, Xi; Rambhatla, Sirisha
    Liver transplantation is a life-saving treatment for patients with end-stage liver disease. However, donor organ scarcity and patient heterogeneity make finding the optimal donor-recipient matching a persistent challenge. Existing models and clinical scores are shown to be ineffective for large national datasets such as the United Network for Organ Sharing (UNOS). In this study, I present a comprehensive machine-learning-based approach to predict posttransplant survival probabilities at discrete clinical important time points and to derive a ranking score for donor-recipient compatibility. Furthermore, I developed a recipient-specific "optimal donor profile," enabling clinicians to quickly compare waiting-list patients to their ideal standard, streamlining allocation decisions. Empirical results demonstrate that my score’s discriminative performance outperforms traditional methods while maintaining clinical interpretability. I further validate that the top compatibility list generated by our proposed scoring method is non-trivial, demonstrating statistically significant differences from the list produced by the traditional approach. By integrating these advances into a cohesive framework, our approach supports more nuanced donor-recipient matching and facilitates practical decision-making in real-world clinical settings.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback