Show simple item record

dc.contributor.authorChang, Jou-Chung
dc.date.accessioned2024-04-24 17:14:39 (GMT)
dc.date.issued2024-04-24
dc.date.submitted2024-04-19
dc.identifier.urihttp://hdl.handle.net/10012/20487
dc.description.abstractAcute mountain sickness (AMS) can occur due to rapid altitude ascents and/or insufficient acclimatization. Acetazolamide (AZ) is commonly prescribed for AMS prophylaxis but appears to inhibit exercise performance. Methazolamide (MZ) has similar prophylactic benefits but does not have a similar decrement in isolated small muscle mass exercise in normoxia. We compared whole-body exercise performance in acute hypoxia (FIO2 = 0.15) between AZ and MZ and hypothesized that time trial duration will be the shortest in MZ compared with AZ and placebo (PLA). Fifteen young healthy participants completed 5 testing visits: day 1 maximal exercise test, day 2 a familiarization visit, and Day 3-5 were the experimental visits. Each experimental visit involved a 5-km hypoxic cycling time trial performed after a 2-day dosing protocol of either AZ (250mg t.i.d.), MZ (100mg b.i.d.) or PL (t.i.d.); the order was randomized and double-blinded. Before and after each experimental time trial, capillary blood samples were taken, and maximal voluntary contractions of the quadriceps were performed. AZ and MZ resulted in a partially compensated metabolic acidosis at rest (capillary H+ 47±3, 43±2, 39±2 nmol for AZ, MZ and PLA respectively, p<0.01). Time to complete 5-km on PLA (562±32s, p<0.01) was significantly faster than AZ and MZ (577±38 vs. 581±37s respectively), with no differences between AZ and MZ (p=0.96). The 5-km average ventilatory efficiency (V̇E/V̇CO2) listed from greatest to least was MZ, AZ and PLA (46±6, 43±4, 37±3 respectively) and were all significantly different (p<0.05). There were no differences in the average ventilation (124±27, 127±24, 127±19 L/min respectively) and oxyhemoglobin saturation (87±2, 88±2, 88±3 respectively) between PLA, AZ and MZ (p>0.05). Peak quadricep torque before exercise was found to be significantly lower in AZ compared to PLA and MZ (543± 77, 574± 76, 552± 67 N respectively, p<0.05). In conclusion, both AZ and MZ impaired whole-body exercise performance in acute hypoxia and this finding might be important to consider for high altitude occupations.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectcarbonic anhydrase inhibitoren
dc.subjectacetazolamideen
dc.subjectmethazolamideen
dc.subjectexercise physiologyen
dc.subjectaltitude physiologyen
dc.subjecttime trial performanceen
dc.subjectaerobic exerciseen
dc.titleThe effects of carbonic anhydrase inhibitors on exercise performance in acute hypoxiaen
dc.typeMaster Thesisen
dc.pendingfalse
uws-etd.degree.departmentKinesiology and Health Sciencesen
uws-etd.degree.disciplineKinesiologyen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.degreeMaster of Scienceen
uws-etd.embargo.terms4 monthsen
uws.contributor.advisorDominelli, Paolo
uws.contributor.affiliation1Faculty of Healthen
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws-etd.embargo2024-08-22T17:14:39Z
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages