Fast and Scalable Solvers for the Fluid Pressure Equations with Separating Solid Boundary Conditions

Loading...
Thumbnail Image

Date

2021-06-01

Authors

Lai, Junyu

Advisor

Wan, Justin

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

We propose and evaluate fast, scalable approaches for solving the linear complementarity problems (LCP) arising from the fluid pressure equations with separating solid boundary conditions. Specifically, we present a policy iteration method, a penalty method, and a modified multigrid method, and demonstrate that each is able to properly handle the desired boundary conditions. Moreover, we compare our proposed methods against existing approaches and show that our solvers are more efficient and exhibit better scaling behavior; that is, the number of iterations required for convergence is essentially independent of grid resolution, and thus they are faster at larger grid resolutions. For example, on a 256^3 grid our multigrid method was 30 times faster than the prior multigrid method in the literature.

Description

Keywords

LC Keywords

Citation