Asymptotics of the number of lattice points in the transportation polytope via optimization on Lorentzian polynomials.

dc.contributor.authorLee, Thomas
dc.date.accessioned2025-04-28T19:05:05Z
dc.date.available2025-04-28T19:05:05Z
dc.date.issued2025-04-28
dc.date.submitted2025-04-25
dc.description.abstractWe formally extend the theory of polynomial capacity to power series and totally uni- modular matrices. Using these results, we prove the log-asymptotic correctness of bounds by Brändén, Leake, and Pak developed through the use of Lorentzian polynomials ([BLP23]) under certain conditions, and provide a counterexample where these bounds are not log- asymptotically correct, even when symmetry exists.
dc.identifier.urihttps://hdl.handle.net/10012/21660
dc.language.isoen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectlattice points
dc.subjectcontingency tables
dc.subjectpolynomial capacity
dc.subjectenumeration
dc.subjectasymptotics
dc.subjectgenerating functions
dc.subjectconvex optimization
dc.titleAsymptotics of the number of lattice points in the transportation polytope via optimization on Lorentzian polynomials.
dc.typeMaster Thesis
uws-etd.degreeMaster of Mathematics
uws-etd.degree.departmentCombinatorics and Optimization
uws-etd.degree.disciplineCombinatorics and Optimization
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms0
uws.contributor.advisorLeake, Jonathan
uws.contributor.affiliation1Faculty of Mathematics
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Lee_Thomas.pdf
Size:
488.52 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: