Optimal Operation of Distribution Feeders in Smart Grids
No Thumbnail Available
Date
2011-02-04
Advisor
Journal Title
Journal ISSN
Volume Title
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Abstract
This paper presents a generic and comprehensive distribution optimal power flow (DOPF) model that can be used by local distribution companies (LDCs) to integrate their distribution system feeders into a Smart Grid. The proposed three-phase DOPF framework incorporates detailed modeling of distribution system components and considers various operating objectives. Phase specific and voltage dependent modeling of customer loads in the three-phase DOPF model allows LDC operators to determine realistic operating strategies that can improve the overall feeder efficiency. The proposed distribution system operation objective is based on the minimization of the energy drawn from the substation while seeking to minimize the number of switching operations of load tap changers and capacitors. A novel method for solving the three-phase DOPF model by transforming the mixed-integer nonlinear programming problem to a nonlinear programming problem is proposed which reduces the computational burden and facilitates its practical implementation and application. Two practical case studies, including a real distribution feeder test case, are presented to demonstrate the features of the proposed methodology. The results illustrate the benefits of the proposed DOPF in terms of reducing energy losses while limiting the number of switching operations.
Description
(© 2011 IEEE) Paudyal, S., Canizares, C. A., & Bhattacharya, K. (2011). Optimal operation of distribution feeders in smart grids. IEEE Transactions on Industrial Electronics, 58(10), 4495–4503. https://doi.org/10.1109/tie.2011.2112314
Keywords
unbalanced distribution systems, distribution power flow, optimal feeder operation, smart grid