Hurwitz Trees and Tropical Geometry

dc.contributor.advisorMcKinnon, David
dc.contributor.advisorGodsil, Chris
dc.contributor.authorAkeyr, Garnet Jonathan
dc.date.accessioned2016-01-21T18:31:58Z
dc.date.available2016-01-21T18:31:58Z
dc.date.issued2016-01-21
dc.date.submitted2016-01-19
dc.description.abstractThe lifting problem in algebraic geometry asks when a finite group G acting on a curve defined over characteristic p > 0 lifts to characteristic 0. One object used in the study of this problem is the Hurwitz tree, which encodes the ramification data of a group action on a disk. In this thesis we explore the connection between Hurwitz trees and tropical geometry. That is, we can view the Hurwitz tree as a tropical curve. After exploring this connection we provide two examples to illustrate the connection, using objects in tropical geometry to demonstrate when a group action fails to lift.en
dc.identifier.urihttp://hdl.handle.net/10012/10186
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectgeometryen
dc.subjectarithmeticen
dc.subjectcurvesen
dc.subjectcombinatoricsen
dc.titleHurwitz Trees and Tropical Geometryen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Mathematicsen
uws-etd.degree.departmentCombinatorics and Optimizationen
uws-etd.degree.disciplineCombinatorics and Optimizationen
uws-etd.degree.grantorUniversity of Waterlooen
uws.contributor.advisorMcKinnon, David
uws.contributor.advisorGodsil, Chris
uws.contributor.affiliation1Faculty of Mathematicsen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Akeyr_Garnet.pdf
Size:
568.06 KB
Format:
Adobe Portable Document Format
Description:
Masters thesis

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.17 KB
Format:
Item-specific license agreed upon to submission
Description: