Fuzzy Prediction Interval Models for Forecasting Renewable Resources and Loads in Microgrids

dc.contributor.authorSaez, Doris
dc.contributor.authorAvila, Fernand
dc.contributor.authorOlivares, Daniel
dc.contributor.authorCanizares, Claudio
dc.contributor.authorMarin, Luis
dc.date.accessioned2025-09-11T19:55:39Z
dc.date.available2025-09-11T19:55:39Z
dc.date.issued2014-12-19
dc.description(© 2015 IEEE) Saez, D., Avila, F., Olivares, D., Canizares, C., & Marin, L. (2015). Fuzzy prediction interval models for forecasting renewable resources and loads in microgrids. IEEE Transactions on Smart Grid, 6(2), 548–556. https://doi.org/10.1109/tsg.2014.2377178
dc.description.abstractAn energy management system (EMS) determines the dispatching of generation units based on an optimizer that requires the forecasting of both renewable resources and loads. The forecasting system discussed in this paper includes a representation of the uncertainties associated with renewable resources and loads. The proposed modeling generates fuzzy prediction interval models that incorporate an uncertainty representation of future predictions. The model is demonstrated using solar and wind generation and local load data from a real microgrid in Huatacondo, Chile, for one-day ahead forecasts to obtain the expected values together with fuzzy prediction intervals to represent future measurement bounds with a certain coverage probability. The proposed prediction interval models would help to enable the development of robust microgrid EMS.
dc.description.sponsorshipMillennium Institute Complex Engineering Systems, ICM: P-05-004-F and CONICYT: FBO16) || National Fund for Science and Technology, 1140775) || CONICYT/FONDAP/15110019.
dc.identifier.doi10.1109/tsg.2014.2377178
dc.identifier.issn1949-3053
dc.identifier.issn1949-3061
dc.identifier.urihttps://doi.org/10.1109/TSG.2014.2377178
dc.identifier.urihttps://hdl.handle.net/10012/22392
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.ispartofIEEE Transactions on Smart Grid
dc.relation.ispartofseriesIEEE Transactions on Smart Grid; 6(2)
dc.subjectEMS
dc.subjectforecasting
dc.subjectrenewable
dc.subjectmicrogrid
dc.subjectfuzzy modeling
dc.subjectprediction intervals
dc.titleFuzzy Prediction Interval Models for Forecasting Renewable Resources and Loads in Microgrids
dc.typeArticle
dcterms.bibliographicCitationSaez, D., Avila, F., Olivares, D., Canizares, C., & Marin, L. (2015). Fuzzy prediction interval models for forecasting renewable resources and loads in microgrids. IEEE Transactions on Smart Grid, 6(2), 548–556. https://doi.org/10.1109/tsg.2014.2377178
oaire.citation.issue2
oaire.citation.volume6
uws.contributor.affiliation1Faculty of Engineering
uws.contributor.affiliation2Electrical and Computer Engineering
uws.peerReviewStatusReviewed
uws.scholarLevelFaculty
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Fuzzy Prediction Interval Models for Forecasting_AAM.pdf
Size:
917.49 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.47 KB
Format:
Item-specific license agreed upon to submission
Description: